Studying 3D structure of proton with neural networks

Krešimir Kumerički

Physics Department University of Zagreb, Croatia

Collaboration with:

Dieter Müller (BNL), Andreas Schäfer (Universität Regensburg),

[JHEP07(2011)073, arXiv:1106.2808[hep-ph]]

Outline

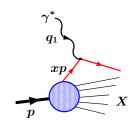
Introduction to Generalized Parton Distributions (GPDs) and Deeply Virtual Compton Scattering (DVCS)

Model-dependent global analysis of unpolarized target DVCS data

Neural networks approach

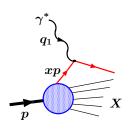
Parton distribution functions

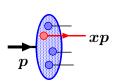
• Deeply inelastic scattering, $-q_1^2 o \infty, \; x_{BJ} \equiv \frac{-q_1^2}{2p \cdot q_1} o \mathrm{const}$

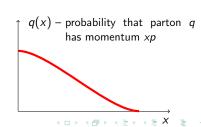


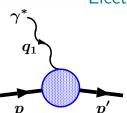
Parton distribution functions

• Deeply inelastic scattering, $-q_1^2 o \infty, \; x_{BJ} \equiv \frac{-q_1^2}{2p \cdot q_1} o \mathrm{const}$



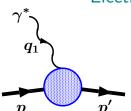






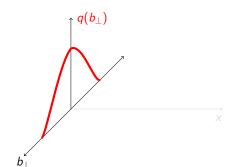
• Dirac and Pauli form factors:

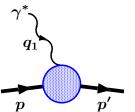
$$F_{1,2}(t=q_1^2)$$





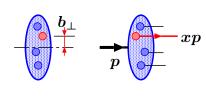
$$egin{aligned} oldsymbol{q(b_\perp)} \sim \int \mathrm{d}q_1 \, e^{-iq_1 \cdot b_\perp} F_1(t=q_1^2) \end{aligned}$$

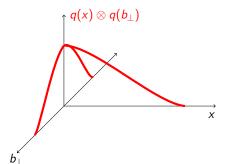


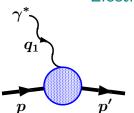


• Dirac and Pauli form factors:

$$q(b_\perp) \sim \int \mathrm{d}q_1 \ e^{-iq_1 \cdot b_\perp} F_1(t=q_1^2)$$



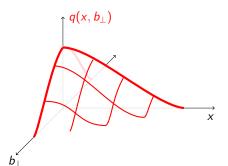




• Dirac and Pauli form factors:

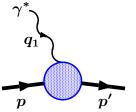
$$q(b_\perp) \sim \int \mathrm{d}q_1 \, e^{-iq_1 \cdot b_\perp} F_1(t=q_1^2)$$





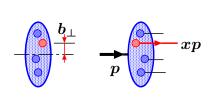
00000

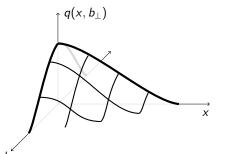
Electromagnetic form factors



Dirac and Pauli form factors:

$$q(b_\perp) \sim \int \mathrm{d}q_1 \, e^{-iq_1 \cdot b_\perp} F_1(t=q_1^2)$$

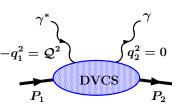




"skewless" GPD: $H^q(x, 0, t = \Delta^2) = \int db_{\perp} e^{i\Delta \cdot b_{\perp}} q(x, b_{\perp})$

Probing the proton with two photons

• Deeply virtual Compton scattering (DVCS) [Müller '92, et al. '94]



$$P = P_1 + P_2$$
, $t = (P_2 - P_1)^2$
 $q = (q_1 + q_2)/2$

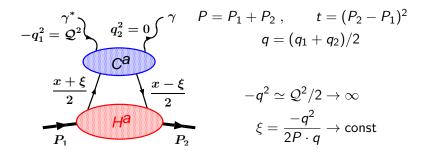
Generalized Bjorken limit: $-q^2 \simeq \mathcal{Q}^2/2 \to \infty$

$$-q^2 \simeq \mathcal{Q}^2/2 \to \infty$$
 $\xi = \frac{-q^2}{2P \cdot q} \to \text{const}$

 To leading twist-two accuracy cross-section can be expressed in terms of Compton form factors (CFFs)

$$\mathcal{H}(\xi,t,\mathcal{Q}^2),\mathcal{E}(\xi,t,\mathcal{Q}^2),\tilde{\mathcal{H}}(\xi,t,\mathcal{Q}^2),\tilde{\mathcal{E}}(\xi,t,\mathcal{Q}^2),\ldots$$

Factorization of DVCS → GPDs



Compton form factor is a convolution:

$$^{a}\mathcal{H}(\xi,t,\mathcal{Q}^{2})=\int\mathrm{d}x\;C^{a}(x,\xi,\mathcal{Q}^{2}/\mathcal{Q}_{0}^{2})\;H^{a}(x,\eta=\xi,t,\mathcal{Q}_{0}^{2})$$
 $_{a=\mathrm{NS},\mathrm{S}(\Sigma,G)}$

• $H^a(x, \eta, t, \mathcal{Q}_0^2)$ — Generalized parton distribution (GPD)

Dispersion-relation access to GPDs at LO

[Teryaev '05; K.K., Müller and Passek-K. '07, '08; Diehl and Ivanov '07]

• LO perturbative prediction is "handbag" amplitude

$$\mathcal{H}(\xi, t, \mathcal{Q}^2) \stackrel{\text{LO}}{=} \int_{-1}^{1} dx \, \left(\frac{1}{\xi - x - i\epsilon} - \frac{1}{\xi + x - i\epsilon} \right) H(x, \xi, t, \mathcal{Q}^2)$$

• giving access to GPD on the "cross-over" line $\eta=x$

$$\frac{1}{\pi} \Im \mathcal{H}(\xi = x, t, \mathcal{Q}^2) \stackrel{\text{LO}}{=} H(x, x, t, \mathcal{Q}^2) - H(-x, x, t, \mathcal{Q}^2)$$

• while dispersion relation connects it to $\Re e \mathcal{H}$ and at the most one subtraction constant $\mathcal{C}_{\mathcal{H}} = -\mathcal{C}_{\mathcal{E}}$; $\mathcal{C}_{\tilde{\mathcal{H}}} = \mathcal{C}_{\tilde{\mathcal{E}}} = 0$

$$\Re \mathcal{H}(\xi, t, \mathcal{Q}^2) = \frac{1}{\pi} \operatorname{PV} \int_0^1 d\xi' \left(\frac{1}{\xi - \xi'} - \frac{1}{\xi + \xi'} \right) \Im \mathcal{H}(\xi', t, \mathcal{Q}^2) + \mathcal{C}_{\mathcal{H}}(t, \mathcal{Q}^2)$$

Model-dependent extraction of GPDs

- Revealing GPD H from DVCS on unpolarized proton target at LO [K.K. and D. Müller '09]
- Valence quarks model (ignoring Q^2 evolution):

$$\Im \mathcal{H}(\xi,t) = \pi \left[\frac{4}{9} H^{u_{\text{val}}}(\xi,\xi,t) + \frac{1}{9} H^{d_{\text{val}}}(\xi,\xi,t) + \frac{2}{9} H^{\text{sea}}(\xi,\xi,t) \right]$$

$$H(x,x,t) = n r 2^{\alpha} \left(\frac{2x}{1+x} \right)^{-\alpha(t)} \left(\frac{1-x}{1+x} \right)^{b} \frac{1}{\left(1 - \frac{1-x}{1+x} \frac{t}{M^{2}}\right)^{p}}.$$

• Fixed: n (from PDFs), $\alpha(t)$ (eff. Regge), p (counting rules)

$$\alpha^{\rm val}(t) = 0.43 + 0.85 \, t/{\rm GeV}^2 \quad (\rho, \, \omega)$$

• Sea partons modelled in conformal moment space + partial wave expansion + \mathcal{Q}^2 evolution

• $\Re e \mathcal{H}$ determined by dispersion relations

$$\Re \mathcal{H}(\xi, t, \mathcal{Q}^2) = \frac{1}{\pi} \operatorname{PV} \int_0^1 d\xi' \left(\frac{1}{\xi - \xi'} - \frac{1}{\xi + \xi'} \right) \Im \mathcal{H}(\xi', t, \mathcal{Q}^2) - \frac{C}{\left(1 - \frac{t}{M_C^2} \right)^2}$$

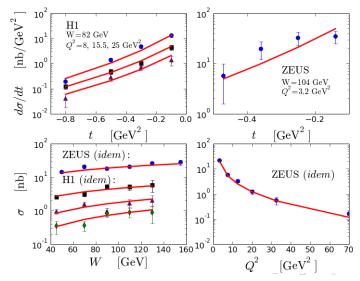
Typical set of free parameters:

$M_0^{ m sea}$, $s_{ m sea}$, $s_{ m G}$	sea* quarks and gluons H
$r^{ m val}$, $M^{ m val}$, $b^{ m val}$	valence <i>H</i>
C, M_C	subtraction constant (H, E)
$(ilde{r}^{ ext{val}}, \ ilde{M}^{ ext{val}}, \ ilde{b}^{ ext{val}})$	valence \widetilde{H} (if needed)

• Global fit to 150–200 data points is fine: $\chi^2/d.o.f. \approx 1$

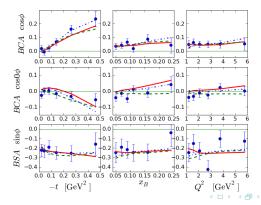
 $^{^*}s_{
m sea,G}=$ strengths of subleading partial wave. LO evolution is included. $_{\equiv}$

H1 (2007), ZEUS (2008)

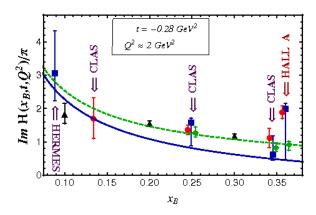


HERMES (2008)

$$\begin{split} BCA &\equiv \frac{\mathrm{d}\sigma_{e^+} - \mathrm{d}\sigma_{e^-}}{\mathrm{d}\sigma_{e^+} + \mathrm{d}\sigma_{e^-}} \\ BSA &\equiv \frac{\mathrm{d}\sigma_{e^+} - \mathrm{d}\sigma_{e^+}}{\mathrm{d}\sigma_{e^+} + \mathrm{d}\sigma_{e^+}} \\ &\sim A_C^{\cos 0\phi} + A_C^{\cos 1\phi} \cos \phi \sim \Re e \mathcal{H} \\ &\sim A_{LU}^{\sin 1\phi} \sin \phi \sim \Im e \mathcal{H} \end{split}$$



Result and comparison to others



[Guidal '08, Guidal and Moutarde '09], seven CFF fit (blue squares), [Guidal '10] \mathcal{H} , $\tilde{\mathcal{H}}$ CFF fit (green diamonds), [Moutarde '09] H GPD fit (red circles)

Models are available at WWW

http://calculon.phy.hr/gpd/

```
% vs eve
 xs.exe ModelID Charge Polarization Ee Ep xB Q2 t phi
returns cross section (in nb) for scattering of lepton of energy Ee
on unpolarized proton of energy Ep. Charge=-1 is for electron.
ModelID is one of
   0 debug, always returns 42.
   1 KM09a - arXiv:0904.0458 fit without Hall A,
   2 KM09b - arXiv:0904.0458 fit with Hall A.
   3 KM10 - preliminary hybrid fit with LO sea evolution, from Trento presentation,
   4 KM10a - preliminary hybrid fit with LO sea evolution, without Hall A data
   5 KM10b - preliminary hybrid fit with LO sea evolution, with Hall A data
xB Q2 t phi -- usual kinematics (phi is in Trento convention)
% xs.exe 1 -1 1 27.6 0.938 0.111 3. -0.3 0
 0.18584386497251
```

Curse of dimensionality

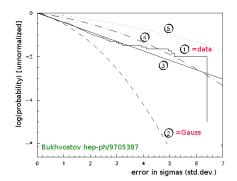
 It is relatively easy to find a coin lying somewhere on 100 meter string. It is very difficult to find it on a football field.

Curse of dimensionality

- It is relatively easy to find a coin lying somewhere on 100 meter string. It is very difficult to find it on a football field.
- Similarly, in contrast to PDFs(x), it is very difficult to perform truly model independent extraction of $GPDs(x, \xi, t)$ (or $CFFs(\xi, t)$).
- Known GPD constraints don't decrease the dimensionality of the GPD domain space.

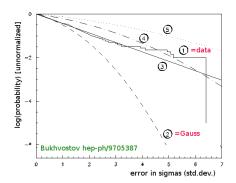
Problems with standard fitting approaches

- 1. Choice of fitting function introduces theoretical bias leading to systematic error which cannot be estimated (and is likely much larger for $GPDs(x, \eta, t)$ than for PDFs(x).
- Propagation of uncertainties from experiment to fitted function is difficult. Errors in actual experiments are not always Gaussian.

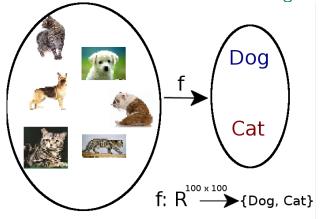


Problems with standard fitting approaches

- 1. Choice of fitting function introduces theoretical bias leading to systematic error which cannot be estimated (and is likely much larger for $GPDs(x, \eta, t)$ than for $PDFs(x) \rightarrow NNets$
- Propagation of uncertainties from experiment to fitted function is difficult. Errors in actual experiments are not always Gaussian. → Monte Carlo error propagation

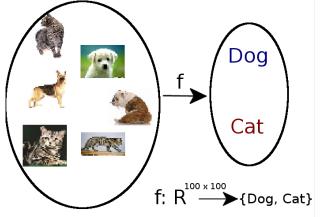


Introduction to neural networks: Cat-or-dog mapping[†]



[†]Homage to Vladimir Igorevich Arnold

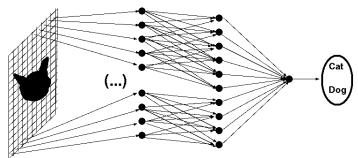
Introduction to neural networks: Cat-or-dog mapping[†]



- How to represent function f by a computer algorithm?
- neural networks, learning machines, Al

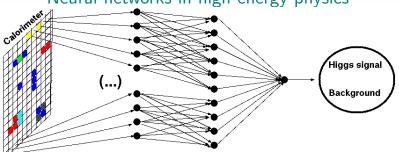
[†]Homage to Vladimir Igorevich Arnold

Cat-or-dog mapping by neural network

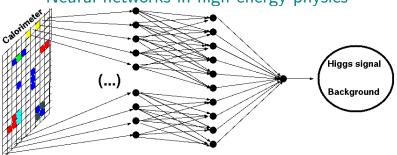


- Parameters ("weights") of neural network adjusted by "training" it on many samples
- Neural network becomes a representation of function f.
- Neural networks are capable of generalization: they successfully classify objects not seen during training

Neural networks in high-energy physics

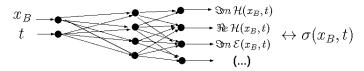


Neural networks in high-energy physics

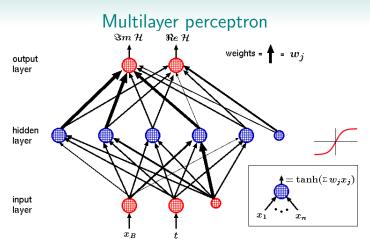


- Neural networks can be used
 - in place of triggers (hardware NN)
 - in place of simple "cuts" of detektor data (software NN)
- Used by CDF, D0, H1, BaBar, . . .
- Training usually done on Monte-Carlo simulated events
- Interpretation of NN behaviour is difficult so lot of testing is required before results can be trusted

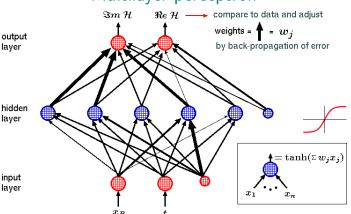
Neural networks as a fitting tool



- Neural network now represents mapping $f: \mathbb{R}^2 \to \mathbb{R}^{n_{\mathcal{F}}}$.
- Classification problem is just a special case of optimization (χ^2 minimization) problem (where we have $\sigma(x_B, t) \in \mathbb{R}$ instead of output $\in \{\text{cat}, \text{dog}\}$).
- We can hope to be able to train neural networks to represent real underlying physical law
- NN approach is successfully applied to PDF fitting by [NNPDF] group and should be even more powerful in GPD fitting with GPDs being less-known functions of more variables.



Multilayer perceptron

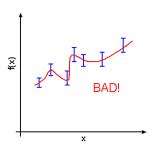


• Essentially a least-square fit of a complicated many-parameter function. $f(x) = \tanh(\sum w_i \tanh(\sum w_j \cdots)) \Rightarrow$ no theory bias

• Theorem: Given enough neurons, any smooth function $f(x_1, x_2, \cdots)$ can be approximated to any desired accuracy. Single hidden layer is sufficient (but not always most efficient).

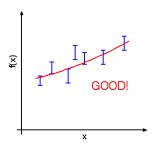
• Theorem: Given enough neurons, any smooth function $f(x_1, x_2, \cdots)$ can be approximated to any desired accuracy. Single hidden layer is sufficient (but not always most efficient).

 With simple training of neural nets to data there is a danger of overfitting (a.k.a. overtraining)



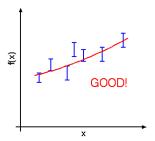
Function fitting by a neural net

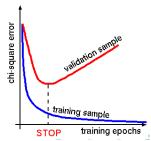
- Theorem: Given enough neurons, any smooth function $f(x_1, x_2, \cdots)$ can be approximated to any desired accuracy. Single hidden layer is sufficient (but not always most efficient).
- With simple training of neural nets to data there is a danger of overfitting (a.k.a. overtraining)



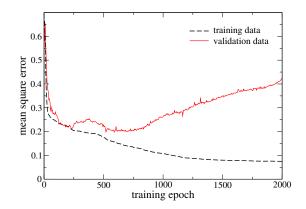
Function fitting by a neural net

- Theorem: Given enough neurons, any smooth function $f(x_1, x_2, \cdots)$ can be approximated to any desired accuracy. Single hidden layer is sufficient (but not always most efficient).
- With simple training of neural nets to data there is a danger of overfitting (a.k.a. overtraining)
- Solution: Divide data (randomly) into two sets: training sample and validation sample. Stop training when error of validation sample starts increasing.



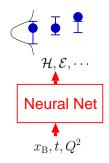


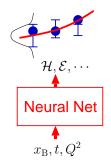
Example of a training with crossvalidation

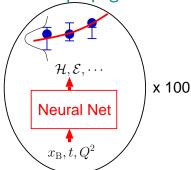


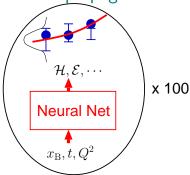
Monte Carlo propagation of errors

III









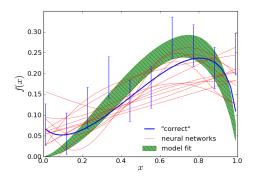
 Set of N_{rep} NNs defines a probability distribution in space of possible CFF functions:

$$\left\langle \mathcal{F}[\mathcal{H}] \right\rangle = \int \mathcal{D}\mathcal{H} \, \mathcal{P}[\mathcal{H}] \, \mathcal{F}[\mathcal{H}] = \frac{1}{N_{rep}} \sum_{k=1}^{N_{rep}} \mathcal{F}[\mathcal{H}^{(k)}] \,, \quad (1)$$

• Experimental uncertainties and their correlations are preserved [Giele et al., '01]

Toy fitting example

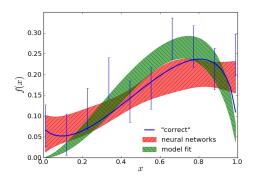
 Fit to data generated according to function (which we pretend not to know).



- Fit with
 - 1. Standard Minuit fit with ansatz $f(x) = x^a(1-x)^b$
 - 2. Neural network fit

Toy fitting example

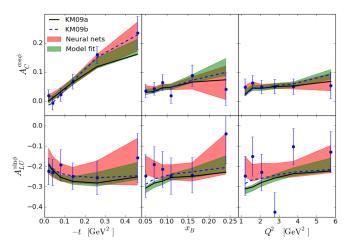
 Fit to data generated according to function (which we pretend not to know).



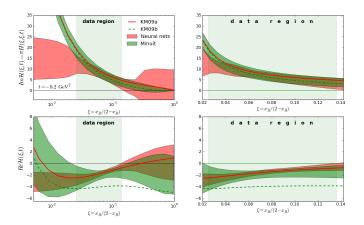
- Fit with
 - 1. Standard Minuit fit with ansatz $f(x) = x^a(1-x)^b$
 - Neural network fit

Fit to actual HERMES BSA+BCA data

50 neural nets with 13 neurons in a single hidden layer



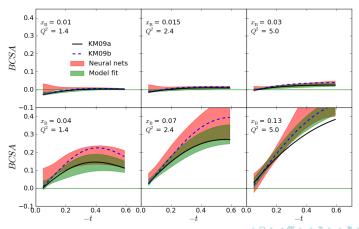
Resulting neural network CFFs



- interpolation in data region agrees with model fits
- extrapolation results in more realistic uncertainties

Prediction for COMPASS II BCSA

$$BCSA = rac{\mathrm{d}\sigma_{\mu^{\downarrow +}} - \mathrm{d}\sigma_{\mu^{\uparrow -}}}{\mathrm{d}\sigma_{\mu^{\downarrow +}} + \mathrm{d}\sigma_{\mu^{\uparrow -}}} \qquad (E_{\mu} = 160\,\mathrm{GeV})$$



Summary

 Neural networks offer a powerful alternative approach to extraction of hadron structure information from measurements, enabling model-independent fits and facilitating error propagation from data to resulting structure functions.

Summary

 Neural networks offer a powerful alternative approach to extraction of hadron structure information from measurements, enabling model-independent fits and facilitating error propagation from data to resulting structure functions.

The End

Some properties of GPDs

• Forward limit ($\Delta \rightarrow 0$): \Rightarrow GPD \rightarrow PDF

$$F^{q}(x,0,0) = H^{q}(x,0,0) = \theta(x)q(x) - \theta(-x)\bar{q}(-x)$$

Polynomiality:

$$\int_{-1}^{1} dx x^{j} H^{q}(x, \eta, t) = \sum_{k=0, \text{even}}^{j} (2\eta)^{k} A_{j+1, k}^{q}(t) \qquad \text{(even j)}$$

Sum rules:

$$\int_{-1}^{1} dx \left\{ \begin{array}{l} H^{q}(x, \eta, t) \\ E^{q}(x, \eta, t) \end{array} \right. = \left\{ \begin{array}{l} F_{1}^{q}(t) & \text{Dirac} \\ F_{2}^{q}(t) & \text{Pauli} \end{array} \right.$$

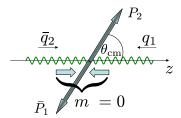
"Ji's sum rule" (related to proton spin problem)

$$J^q = rac{1}{2} \int_{-1}^1 dx \, x \Big[H^q(x, \eta, t) + E^q(x, \eta, t) \Big]_{t o 0}$$
 [Ji '96]

Krešimir Kumerički: Studying 3D structure of proton with neural networks

Modelling conformal moments of GPDs (I)

- How to model η -dependence of GPD's $H_i(\eta, t)$?
- Idea: consider crossed *t*-channel process $\gamma^* \gamma o p \bar{p}$

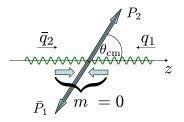


When crossing back to DVCS channel we have:

$$\cos heta_{
m cm}
ightarrow -rac{1}{m}$$

Modelling conformal moments of GPDs (I)

- How to model η -dependence of GPD's $H_i(\eta, t)$?
- Idea: consider crossed t-channel process $\gamma^* \gamma \to p\bar{p}$



When crossing back to DVCS channel we have:

$$\cos heta_{
m cm}
ightarrow -rac{1}{\eta}$$

• ... and dependence on $\theta_{\rm cm}$ in *t*-channel is given by SO(3) partial wave decomposition of $\gamma^*\gamma$ scattering

$$\mathcal{H}(\eta,\ldots) = \mathcal{H}^{(t)}(\cos\theta_{\mathrm{cm}} = -\frac{1}{\eta},\ldots) = \sum_{J} (2J+1)f_{J}(\ldots)d_{0,\nu}^{J}(\cos\theta)$$

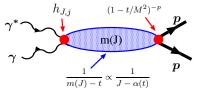
• $d_{0,\nu}^J$ — Wigner SO(3) functions (Legendre, Gegenbauer,...) $\nu = 0, \pm 1$ — depending on hadron helicities

Modelling conformal moments of GPDs (II)

• OPE expansion of both \mathcal{H} and $\mathcal{H}^{(t)}$ leads to

$$H_j(\eta, t) = \eta^{j+1} H_j^{(t)}(\cos \theta = -\frac{1}{\eta}, s^{(t)} = t)$$

and t-channel partial waves are modelled as:



$$H_{j}(\eta,t) = \sum_{J}^{j+1} h_{J,j} rac{1}{J - lpha(t)} rac{1}{\left(1 - rac{t}{M^{2}(J)}
ight)^{p}} \, \eta^{j+1-J} d_{0,
u}^{J}$$

• Similar to "dual" parametrization [Polyakov, Shuvaev '02]

I-PW model — only leading partial wave

• Taking just a leading partial wave J = j + 1 gives ansatz:

$$\begin{aligned} \mathbf{H}_{j}(\xi,t,\mu_{0}^{2}) &= \left(\begin{array}{c} N_{\Sigma}' F_{\Sigma}(t) \, \mathrm{B} \big(1 + j - \alpha_{\Sigma}(0), 8 \big) \\ N_{G}' F_{G}(t) \, \mathrm{B} \big(1 + j - \alpha_{G}(0), 6 \big) \end{array} \right) \\ \alpha_{s}(t) &= \alpha_{s}(0) + 0.15t \qquad F_{s}(t) = \frac{j + 1 - \alpha(0)}{j + 1 - \alpha(t)} \left(1 - \frac{t}{M_{0}^{s^{2}}} \right)^{-\rho_{s}} \end{aligned}$$

... corresponding in forward case to PDFs of form

$$\Sigma(x) = N'_{\Sigma} x^{-\alpha_{\Sigma}(0)} (1-x)^7$$
; $G(x) = N'_{G} x^{-\alpha_{G}(0)} (1-x)^5$

I-PW model — only leading partial wave

• Taking just a leading partial wave J = j + 1 gives ansatz:

$$\mathbf{H}_{j}(\xi, t, \mu_{0}^{2}) = \begin{pmatrix} N'_{\Sigma} F_{\Sigma}(t) \, \mathsf{B}(1 + j - \alpha_{\Sigma}(0), 8) \\ N'_{\mathsf{G}} F_{\mathsf{G}}(t) \, \mathsf{B}(1 + j - \alpha_{\mathsf{G}}(0), 6) \end{pmatrix}$$

$$\alpha_{\mathsf{a}}(t) = \alpha_{\mathsf{a}}(0) + 0.15t \qquad F_{\mathsf{a}}(t) = \frac{j + 1 - \alpha(0)}{j + 1 - \alpha(t)} \left(1 - \frac{t}{M^{\mathsf{a}^{2}}}\right)^{-\rho_{\mathsf{a}}}$$

... corresponding in forward case to PDFs of form

$$\Sigma(x) = N'_{\Sigma} x^{-\alpha_{\Sigma}(0)} (1-x)^7; \qquad G(x) = N'_{G} x^{-\alpha_{G}(0)} (1-x)^5$$

- $M_0^G = \sqrt{0.7}\,\mathrm{GeV}$ is fixed by the J/ψ production data
- Free parameters: N_{Σ} , $\alpha_{\Sigma}(0)$, M_{0}^{Σ} , N_{G} , $\alpha_{G}(0)$

For small ξ (small x_{Bj}) valence quarks are less important $\Rightarrow \sum_{k} \approx \text{sea}$

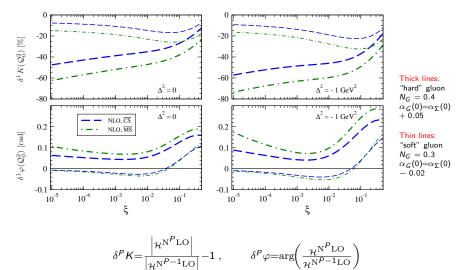
Inclusion of subleading PW — flexible models

• [K.K. and D. Müller '09]

$$\mathbf{H}_{j}(\eta,t) = \underbrace{\begin{pmatrix} N_{\rm sea}' F_{\rm sea}(t) \, \mathrm{B} \big(1+j - \alpha_{\rm sea}(0), 8 \big) \\ N_{\rm G}' F_{\rm G}(t) \, \mathrm{B} \big(1+j - \alpha_{\rm G}(0), 6 \big) \end{pmatrix}}_{\text{skewness } r \approx 1.6 \, (\text{too large})} + \underbrace{\begin{pmatrix} s_{\rm sea} \\ s_{\rm G} \end{pmatrix}}_{\text{sead subleading partial waves, } \frac{\eta}{\text{dependence!}}}_{\text{skewness}}$$

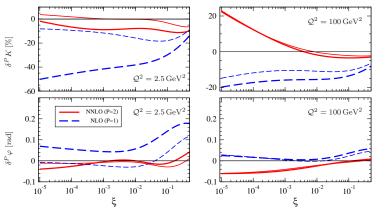
- nl-PW addition of second PW needed for good fits
- two new parameters: s_{sea} and s_G
- nnl-PW addition of third PW (doesn't improve fits but makes possible positive gluon GPDs at small Q²).

NLO corrections



$$\left|_{\mathcal{H}^{N^{P-1}LO}}\right|^{-1}$$
, $\left|_{\mathcal{H}^{N^{P-1}LO}}\right|$

NNLO corrections



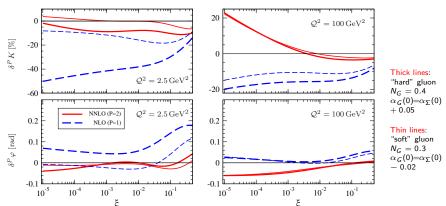
Thick lines:

"hard" gluon $N_G = 0.4$ $\alpha_G(0) = \alpha_{\Sigma}(0)$ + 0.05

Thin lines:

"soft" gluon $N_G = 0.3$ $\alpha_G(0) = \alpha_{\Sigma}(0)$ -0.02

NNLO corrections



- breakdown at small- x_{Bj} , coming from $\alpha_s ln(1/x_{Bj})$ behaviour in evolution operator. Situation maybe worse for meson production [Diehl, Kugler, Ivanov, Szymanowski, Krasnikov]
 - ⇒ resummation needed

Beam charge asymmetry

$$BCA \equiv \frac{\mathrm{d}\sigma_{e^{+}} - \mathrm{d}\sigma_{e^{-}}}{\mathrm{d}\sigma_{e^{+}} + \mathrm{d}\sigma_{e^{-}}} = \frac{\mathcal{A}_{\mathrm{Interference}}}{|\mathcal{A}_{\mathrm{DVCS}}|^{2} + |\mathcal{A}_{\mathrm{BH}}|^{2}} \overset{\mathrm{LO}}{\propto} F_{1} \Re \mathcal{H} + \frac{|t|}{4M^{2}} F_{2} \Re \mathcal{E}$$

Beam charge asymmetry

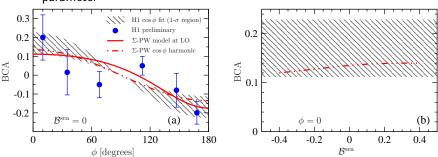
$$BCA \equiv \frac{\mathrm{d}\sigma_{e^{+}} - \mathrm{d}\sigma_{e^{-}}}{\mathrm{d}\sigma_{e^{+}} + \mathrm{d}\sigma_{e^{-}}} = \frac{\mathcal{A}_{\mathrm{Interference}}}{|\mathcal{A}_{\mathrm{DVCS}}|^{2} + |\mathcal{A}_{\mathrm{BH}}|^{2}} \overset{\mathrm{LO}}{\propto} F_{1} \Re \mathcal{H} + \frac{|t|}{4M^{2}} F_{2} \Re \mathcal{E}$$

• Model $E_{\rm sea}$ as $(\mathcal{B}_{\rm sea}/N_{\rm sea})H_{\rm sea}$ and take $\mathcal{B}_{\rm sea}\equiv\int\!\!\mathrm{d}x\,x\,E_{\rm sea}$ as a parameter

Beam charge asymmetry

$$\textit{BCA} \equiv \frac{\mathrm{d}\sigma_{e^+} - \mathrm{d}\sigma_{e^-}}{\mathrm{d}\sigma_{e^+} + \mathrm{d}\sigma_{e^-}} = \frac{\mathcal{A}_{\mathrm{Interference}}}{|\mathcal{A}_{\mathrm{DVCS}}|^2 + |\mathcal{A}_{\mathrm{BH}}|^2} \overset{\mathrm{LO}}{\propto} \textit{F}_1 \Re e \mathcal{H} + \frac{|t|}{4\textit{M}^2} \textit{F}_2 \Re e \mathcal{E}$$

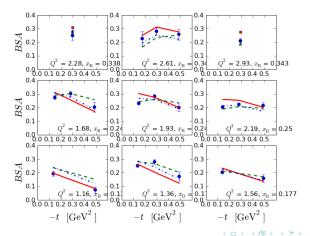
• Model $E_{\rm sea}$ as $(\mathcal{B}_{\rm sea}/N_{\rm sea})H_{\rm sea}$ and take $\mathcal{B}_{\rm sea}\equiv\int\!\!\mathrm{d}x\,x\,E_{\rm sea}$ as a parameter



• We cannot extract $\mathcal{B}_{\mathrm{sea}}$ from H1 data

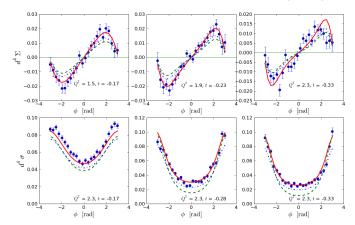
CLAS (2007)

• BSA. (Only data with $|t| \le 0.3 \, \mathrm{GeV}^2$ used for fits.)

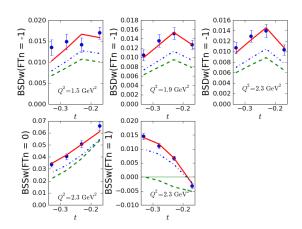


Hall A (2006)

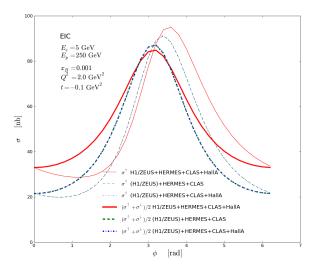
- Fit to unpolarized cross section $d\sigma/(dx_BdQ^2dtd\phi)$ $\sim \Re e\mathcal{H}$
- ullet Fit is OK only with unusually large $\Re e \mathcal{T}_{
 m DVCS} \ (o ilde{\mathcal{H}})$



Hall A (2006) II



Prediction for EIC cross section



Assesment of uncertainties

- Theory predictions without appropriate uncertainties are of limited value.
- Usual procedure: calculate Hessian matrix of second derivatives of χ^2 w.r.t. parameters a_i at minimum χ^2_0 ...

$$H_{ij} = \frac{\partial^2 \chi^2}{\partial a_i \partial a_j} \ .$$

ullet ...and propagate errors to any quantity $f(a_i)$ via formula

$$(\Delta f)^2 = T^2 \sum_{ii} \frac{\partial f}{\partial a_i} H_{ij}^{-1} \frac{\partial f}{\partial a_j} .$$

• Textbook statistics instructs us to set tolerance parameter T=1; this, however, usually underestimates uncertainties (for PDFs CTEQ has T=5-10)